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ABSTRACT The extracellular space of the brain is the heterogeneous porous medium formed by the spaces between the brain
cells. Diffusion in this interstitial space is the mechanism by which glucose and oxygen are delivered to the brain cells from the
vascular system. It is also a medium for the transport of certain informational substances between the cells (called volume
transmission), and for drug delivery. This work involves three-dimensional modeling of the extracellular space as void space in
close-packed arrays of fluid membrane vesicles. These packings are generated by minimizing the configurational energy using a
Monte Carlo procedure. Both regular and random packs of vesicles are considered. A random walk algorithm is then used to
compute the geometric tortuosities, and the results are compared with published experimental data. For the random packings, it is
found that although the absolute values for the tortuosities differ, the dependence of the tortuosity on pore volume fraction is very
similar to that observed in experiment. The tortuosities we measure are larger than those computed in previous studies of packings
of convex polytopes, and modeling improvements, which require higher resolution studies and an improved modeling of brain cell
shapes and mechanical properties, could help resolve remaining discrepancies between model simulations and experiment. It is
also shown that the specular reflection scheme is the appropriate technique for implementing zero-flux boundary conditions in
random walk simulations commonly encountered in diffusion problems.

INTRODUCTION

The interstitial space between cells in the brain is called the

extracellular space (ECS) (1). Diffusion in the ECS is an

essential component in many processes ranging from the

delivery of glucose to cells to novel intracellular communi-

cation; it is also the primary mechanism for drug delivery to

the brain and is important for measurements such as diffusion-

weighted magnetic resonance imaging.

The brain is composed of a heterogeneous packing of a

large number of different cell types. While the cell bodies of

brain cells typically have a diameter in the range of 5–50 mm,

many of the cellular elements in the central nervous sys-

tem are smaller. A typical brain cell is enclosed in a lipid

bilayer membrane containing various receptors and protein

channels, and there are numerous extensions from the cell

body—called processes—which play a fundamental role in

intercellular communications (2). Although these cells are

densely packed, there is a small ECS between each cell. The

cells do not appear to be in direct contact, except at gap

junctions, and it is generally estimated that the width of the

gap between the cells is on the order of 200 Å (3). There is a

large amount of experimental data that clearly shows that the

ECS comprises ;20% of the total volume of the brain (1).

The ECS is filled with an electrolyte containing various ions

and a small number of larger organic molecules. The col-

lection of long-chain molecules in the ECS forms what is

called extracellular matrix (4). Many of these molecules are

tethered to the cell membranes, but others float freely in the

ECS. Although there is considerable interest in the extracel-

lular matrix, its density and composition, as well as its

influence on the diffusive processes in the ECS, are not well

known.

Most of what is known about the structure of the ECS

comes from measuring the diffusion constants of various

molecules. This data can be summarized in terms of the

behavior of the tortuosity, l, defined here as the square-root

of the ratio of the diffusion constant of the molecule in a free

medium (water or dilute gel), D, over the value in the ECS

(D*), i.e., l[
ffiffiffiffiffiffiffiffiffiffiffiffi
D=D�

p
. In healthy brain tissue, l is typically

;1.6, but can be as large as 1.9–2 when there are pathologies

that involve cellular swelling.

The extra cellular space has a very complex structure, since

the shapes of the constitutive cells are complex and the con-

necting passages are tortuous and have a random connectivity.

There are two distinct factors contributing to the measured

tortuosity. The first is purely geometrical: in the ECS, the

diffusing particle has only a limited number of tortuous paths

to follow, requiring a longer time to diffuse a given distance

(5). This contribution to the tortuosity is called the geometric

tortuosity. Another possible contribution comes from an en-

hanced viscosity in the ECS (called constitutive effects)

caused by the impeded movement of the diffusing molecule

by the extracellular matrix (6,7). Only the geometric depen-

dence of tortuosity will be considered in this article.

There are also a considerable amount of experimental data

on the behavior of the volume fraction of the ECS, a, and the

tortuosity, l, in osmotically stressed brain tissue. In recent

experiments, the size of the ECS was controlled by varying
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the osmotic pressure of media bathing isolated brain tissue

(8,9). Measurements on rat cortex have shown (10) that

while a decreases under hypo-osmolarity and increases with

hyperosmolarity, l increases in hypotonic media, but reaches

a plateau after first decreasing slightly in hypertonic media,

in contradiction to the usual expectation that l should monot-

onously decrease with increasing a.

There have been a large number of attempts to compute

the tortuosity from models representing the brain structure.

Rusakov and Kullmann (6) constructed a computational model

based on differential geometry to determine the tortuosity of

brain tissue. Their model involved representing the ECS as a

three-dimensional random porous structure and computing

the increase in the mean local path length of the diffusing

molecule in the tissue as compared to the free medium. How-

ever, as Nicholson (1) pointed out, such geometric ap-

proaches suffer from the drawback that it is hard to correctly

weight the contributions of different paths.

Chen and Nicholson (11) used the area outside regular

arrays of convex impermeable surfaces with rounded corners

to model the ECS in two dimensions. The tortuosity for these

models was computed by transforming the problem into one

that involved solving a simple Laplace equation in the

interstitial region, by applying principles of homogenization

theory (12). Using these models, they studied the depen-

dence of the tortuosity on the separation 2h between the

planar surfaces in the arrays and the radius of curvature a of

the corners (see Fig. 1). They also considered random ar-

rangements of cells of random shape in two dimensions. On

the basis of their results, they argued that the behavior of l

as the brain underwent osmotic stress could be due to fact

that the brain cells change their shape with changes in os-

molarity. They argued that it is possible that l can remain

constant with increasing a if there are ‘‘lakes’’ at the junc-

tions between the cells, which locally trap diffusing molecules,

thereby offsetting the increased diffusion in the expanding

free space.

More recently, Tao and Nicholson (13) considered several

model geometries of periodic arrays of convex polytopes in

three dimensions. In these models, the ECS was an inter-

connected planar array of uniform thickness. For these

geometries, they obtained the simple relationship lðaÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� aÞ=2

p
, which is the same as a result Maxwell derived

for a dilute suspensions of spheres (14), and argued that

three-dimensional models constructed from convex poly-

topes do not capture the critical structural features of the

brain’s ECS. In subsequent work, which incorporated con-

cave elements into the model (15–18), it was found that

geometrical tortuosities very similar to those measured in

experiments were obtained if the ‘‘dead space’’ created by

the concave invaginations were sufficiently large. Hrabětová

et al. (19) presents some experimental justification for dead-

space microdomains, as well as some suggestions about how

they may form.

In this article, we model the ECS network in three

dimensions by relaxing an array of fluid membrane vesicles.

While this first-principles approach yields only a crude

approximation of the ECS of brain tissue, two-dimensional

cross-sections of the resulting networks look very similar to

the random networks studied in Chen and Nicholson (11),

and it is likely that shape changes at ECS network junctions

induced by osmotic challenge can be modeled reasonably

accurately. Since the initial arrays of spherical vesicles have

porosities in the range 32–40%, depending on the degree of

polydispersity (20), we expect—and do find—that the void

space at junctions in the resulting ECS networks is relatively

large. The ECS networks we generate consist of curved pas-

sages along multicell contact lines connecting these junc-

tions. Diffusivities in this network are measured using the

particle tracking algorithm developed to study dispersion in

beadpacks (21,22). The influence of osmotic stress is studied

by imposing a pressure difference between the interior and

exterior regions of the vesicles.

MODELING

The brain is composed of a complex array of cells with a wide

range of size, structure, and function. As a result, the con-

necting passages in the ECS are tortuous, the connectivity is

random, and there are many relevant length scales. Further-

more, many of the cellular elements are not spherical, but have

a tubular or sheetlike structure. A first-principles modeling of

diffusion in the brain’s ECS is therefore extremely difficult,

and the complexity of the problem is the primary reason that

most efforts to model the ECS have utilized regular arrays of

convex polytopes.

Cells are bounded by a lipid bilayer membrane, and the

interior of the cell contains the cytoskeleton, a complex fila-

mentous network comprised of microtubules, actin filaments,

and intermediate filaments. Together, these structures pro-

vide shape and mechanical integrity for the cell. While the

elastic properties of individual cells are not well understood,

FIGURE 1 (A) Two-dimensional regular arrangement of square cells with

rounded corners. (B) Detail of the periodic repeat unit used for testing the

random walk algorithm and various implementations of zero flux boundary

conditions. The figure has been redrawn from Chen and Nicholson (11).

Three-Dimensional Modeling of Brain’s ECS 3369

Biophysical Journal 92(10) 3368–3378



the mechanical properties of lipid-bilayer membranes have

been studied intensively recently, and it has been shown that

their elastic and thermal properties can be well described

using a theory based on the curvature elasticity of thin shells.

For example, the characteristic discocyte shape of a red

blood cell can be obtained by minimizing the curvature

energy with the constraints of fixed membrane area and a

particular fixed enclosed volume.

Ideally, if we knew how to model the mechanical prop-

erties of these cells, we could relax random arrays of the cells

to form structurally representative examples of the brain and

its extracellular space. Various techniques such as homog-

enization theory or random walk algorithms could then be

used to determine the tortuosity as a function of the porosity.

However, as noted above, the structure and elastic behavior

of cells is quite complicated, and it is not clear how it should

be modeled. What we have done, therefore, is to use a simple

model of the curvature elasticity of thin shells to describe the

mechanical properties of the cells. While this is, at best, only

a very crude approximation to the elastic properties of real

cells, it enables us to study the dependence of the tortuosity

on pore volume fraction and osmotic stress in both regular

and random arrays of vesicles with well-defined elastic prop-

erties. In this article, we do not consider the influence of the

extracellular matrix. Although measurements of the molec-

ular weight dependence of the tortuosity indicate that the

extracellular matrix may significantly affect the values of the

tortuosity in certain cases, due to the limited understanding

of viscous effects on tortuosity, we do not consider them

here. We hope that the current approach will provide insight

into the influence of various structural factors on the geo-

metric tortuosity, and serve as a guide for more detailed

future studies.

Fluid membranes and vesicles

In the current approximation, the shape of the cell is deter-

mined by the curvature elasticity of the lipid bilayer sur-

rounding the cell; the molecular properties, architecture, and

the interactions of the membrane constituents enter only

through the functional form of the elastic energy and the

values of the elastic moduli.

A lipid membrane is free to adjust its surface area so as to

minimize the free energy of the amphiphiles. On the timescale

of a typical experiment, the number of lipids in a membrane

does not change, so that the area of the membrane is constant

and the interfacial tension is zero in the unstressed state. The

shape and fluctuation spectra of lipid membranes are deter-

mined by its curvature elasticity.

Spontaneous curvature model of fluid membrane elasticity

As already noted, the Hamiltonian of fluid membranes is not

only invariant under rotations and translations, but also

under reparameterizations. This additional invariance is due

to the fluid structure, which does not allow a preferred

coordinate system, and therefore cannot support shear stress.

Fluid membranes are compressible, but the compressibility

modulus is usually rather large, so that they are often studied

in the incompressible limit, where the membrane area is

fixed. In this case, the only contribution to the configura-

tional energy is the bending energy (23–25)

Hb ¼
Z

dS
1

2
kðH � C0Þ2 1 �kK

� �
; (1)

where k is the bending rigidity, �k the saddle-splay modulus,

and C0 the spontaneous curvature; H ¼ C1 1 C2 and K ¼
C1C2 are the trace and determinant of the curvature tensor,

respectively. For fixed topology, the second term in Eq. 1 is a

constant, by the Gauss-Bonnet theorem. Morse et al. (26)

have shown that a finite compressibility does not change the

scaling behavior; we therefore ignore compressibility effects

in the following.

Randomly-triangulated surface models for fluid membranes

We model a membrane as a triangulated network of particles

that form a regular two-dimensional array embedded in d¼ 3

spatial dimensions. Vesicles are closed sheets with the

topology of a sphere.

We employ a simple string-and-bead model (27) in which

the particles or vertices of the triangular network interact via

the tethering potential

VðrÞ ¼ 0 if r , ‘0

N otherwise
:

�
(2)

The potential V(r) acts only between tethered nearest

neighbors; it ensures that the distance between nearest neigh-

bors is ,‘0. In simulations, self-avoidance can be guaranteed

by placing a particle at each vertex that is sufficiently large

that it cannot pass through the network mesh. Because of the

large values for the bending rigidity we employ, self-

intersection of individual vesicles does not occur, and this

was not necessary. Nevertheless, it is convenient to include

the hard sphere potential

VHSðrÞ ¼
N if r , r0

0 otherwise

�
(3)

between all particles in the same vesicle. We use r0 ¼ 1 and

‘0 ¼
ffiffiffiffiffiffiffi
2:8
p

r0 in our simulations.

To model fluid membranes, this network model has to be

modified to allow for the diffusion of vertices in the mem-

brane. This is done by making the connectivity of the net-

work a dynamic variable. The simplest way to do so is to cut

and reattach tethers between the four beads of two neigh-

boring triangles (28–33). To maintain the triangular nature of

the network, a bond-flip is only allowed if the initially

connected vertices have at least four neighbors each. Also, a

bond-flip is only possible if the distance of the two initially
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disconnected vertices falls within the tether length. The

bond-flip algorithm has the advantage that it preserves both

the two-dimensional connectivity and the topology of the

network (27).

We assume that the spontaneous curvature of the mem-

brane is zero, and use a discretization of the squared

Laplacian form of the bending energy

HLap ¼
Z

dS H2
[

Z
dSðDRÞ2: (4)

A general introduction to methods for discretizing oper-

ators on triangulated random surfaces is given by Itzykson

(34). On a triangulated surface, the mean curvature at node

i is

H ¼ n � DR/Hi ¼
1

si

ni �+
jðiÞ

sij

lij

ðRi � RjÞ; (5)

where ni is the surface normal at node i and the sum is over

the neighbors of site i. The value lij is the distance between

the two nodes i and j, sij is the length of a bond in the dual

lattice (34), and

si ¼
1

4
+
jðiÞ

sijlij (6)

is the area of the virtual dual cell of vertex i. The length sij in

Eqs. 5 and 6 is given by sij ¼ lij[cot(u1) 1 cot(u2)]/2, where

u1 and u2 are the two angles opposite link ij in the triangles

(ijk) and (ijk9), respectively.

Since nkDR for surfaces embedded in three dimensions,

Eq. 5 implies that the Laplacian squared bending energy can

be written as (34,35)

E
Lap

b ¼
t

2
+

i

siðDRÞ2i ¼
t

2
+

i

1

si

+
jðiÞ

sij

lij

ðRi � RjÞ
" #2

(7)

with t ¼ k.

Porous network generation

Using the discrete free energy Eq. 7, we have generated

various three-dimensional arrays of nonintersecting vesicles

by minimizing the configurational free energy. A general

introduction to the Monte Carlo procedure we employed can

be found in Gompper and Kroll (27). Both regular and

random networks have been generated. In the first case, a

Monte Carlo simulation of a single vesicle was performed in

a cubic box. The size of the box was periodically allowed to

shrink, while making sure that the vesicle does not intersect

the box surface. This was done by checking that none of the

tethers intersect the box surfaces. The value k/kBT ¼ 30 was

used for the bending rigidity, ensuring that that vesicle

surface is smooth. This procedure was continued until a

porosity of 20% was attained. Simulations performed using

larger values of the bending rigidity yielded configurations

consistent with those obtained for this value of k. A simple

cubic periodic array was then obtained by replicating this

elementary cell. Osmotically stressed periodic arrays of

various porosities were generated in the same way while

applying a pressure difference between the vesicle interior

and exterior, keeping the box size fixed.

Random networks were generated using a similar proce-

dure after starting with a random close-packed array of

spherical vesicles in a simulation cell with periodic boundary

conditions. As the size of the simulation cell was decreased,

the vesicles deformed, creating a tightly packed random array

of highly deformed vesicles. During this procedure, self-

avoidance was ensured by making sure that a vesicle’s tethers

do not intersect the surface triangles of adjacent vesicles.

Arrays with a wide range of porosities were generated in this

way. We did not consider osmotically stressed random

arrays.

The interstitial spaces separating the vesicles were then

used to model the ECS.

RANDOM WALK SIMULATION

Lagrangian particle tracking methods are more efficient than

finite element methods for solving the convection-diffusion

equation in problems where Peclet numbers are very large

and/or the geometries are complex (36). Particle tracking

methods are more stable, easy to implement, and free from

numerical dispersion and mesh generation problems. In the

current application, the Peclet number is zero. However, the

three-dimensional geometries we consider are very complex,

and mesh generation and refinement problems prevented us

from using finite element methods in three dimensions. We

therefore used a random walk method, which is the most

straightforward implementation of the Lagrangian particle

tracking method. In the random walk model we use, the

position of a tracer particle is determined by the following

stochastic differential equation (21),

drðtÞ ¼ B � dWðtÞ; (8)

where B � dW is a random displacement vector. B is a

constant diagonal matrix whose components are proportional

to the diffusion coefficients in the respective directions, and

dW is an increment of a continuous Gaussian process. An

Euler approximation for Eq. 8 can be written as

rðt 1 DtÞ ¼ rðtÞ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2DDtÞ

p
j; (9)

where j is a vector of length
ffiffiffi
d
p

with random direction; d is

the spatial dimension.

It is well known that random walk algorithms describe a

diffusion process. However, there is no consensus regarding

the correct implementation of certain boundary conditions for

particle-based methods. In this work, we use both periodic

and zero-flux boundary conditions. Although the implemen-

tation of periodic boundary conditions is straightforward,

several procedures have been used in the literature to describe
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zero-flux boundary conditions (21). The appropriate choice is

analyzed in the following.

Proposed implementations of the zero-flux boundary

condition are

1. Specular reflection. The trajectory, r(t) of a tracer par-

ticle undergoing specular reflection at the x ¼ 0 plane is

given by

rðt 1 DtÞ ¼ R � ½rðtÞ1 DWðtÞ�; rðtÞ1 DWðtÞ;V; (10)

where R is the mirror reflection operator R ¼ 1� 2n̂n̂,

DWðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2DDtÞ

p
j, and V is the diffusion domain. The

value n̂ is the unit vector normal to the x ¼ 0 plane (36).

2. Rejection. The move is rejected if r(t) 1 DW(t);V, i.e.,

for that time step Dt the particle remains at its previous

position (37,38).

3. Multiple rejection. The increment DW(t) is rejected and a

new increment is found until r(t) 1 DW(t) 2 V (39).

4. Interruption. The particle stops at the boundary and its

clock is incremented by gDt with g given by

rðt 1 gDtÞ ¼ rðtÞ1 gDWðtÞ 2 S; (11)

where + is the boundary of V. For the remainder of the time

step, Dt9 ¼ (1 – g)Dt, the particle moves away from the

boundary in a new randomly chosen direction, DW(t 1

gDt)) (21,40).

It is shown in Szymczak and Ladd (36) that some of these

schemes (multiple rejection and interruption) fail to impose

the zero-flux boundary condition correctly. For the current

application, we determine the most accurate procedure by

performing random walk simulations in a well-defined two-

dimensional geometry whose tortuosity can be accurately

determined by an alternate method. The procedure that yields

the most accurate results will be used in subsequent three-

dimensional simulations.

Implementation in two dimensions

We have chosen to use the two-dimensional geometry shown

in Fig. 1, which is one of the lattice arrangements of cells

studied by Chen et al. (11). Accurate estimates for the

tortuosity have been determined by applying the homoge-

nization method discussed in detail in Chen and Nicholson

(11). Since the geometry is simpler in this case, mesh

generation problems did not occur. The construction of the

two-dimensional geometry and the mesh generation is done

in GAMBIT (Fluent Inc., Lebanon, NH), and the tortuosity is

computed by numerically solving the final Laplace equation

using FLUENT (Fluent, Inc.) software. FLUENT’s user-

defined scalar feature has been used for defining the variable

v of Chen and Nicholson (11), and the default parameters in

FLUENT—velocity, viscosity, etc.—are set to zero. Also,

the default criterion for convergence in FLUENT has been

used.

Results for the tortuosity as a function of a, the radius of

curvature of the corners, for fixed a/h¼ 1 and 1.5, are shown

in Fig. 2. For fixed a/h, it can be seen that l(a) is linear in a.

Although the slope of the straight line depends on the value

of the ratio a/h, the intercept with l-axis is the same, e.g.,

1.414, in both cases. For fixed a/h, the limit a / 0 results in

a network of tubes, which is known to have the tortuosity
ffiffiffi
2
p

(43).

Four sets of random walk simulations were performed

using the same geometry, with each set corresponding to one

of the four implementations of the zero flux boundary con-

ditions discussed above. The region lying within the unit

square and outside the shaded region is the interstitial domain

occupied by the diffusing particles. Periodic boundary con-

ditions are imposed at the edges of the unit cell (to model an

infinite periodic system), and no-flux boundary conditions

were implemented on the solid boundaries. At the start of the

simulation, the domain is uniformly filled with large number

of tracer particles. At each time step, the coordinates of the

tracer particles are updated according to

rðt 1 DtÞ ¼ rðtÞ1 2
ffiffiffiffiffiffiffiffiffi
DDt
p

½cosðuÞêx 1 sinðuÞêy�; (12)

where u is a random angle uniformly distributed in the

interval [0, 2p]. When a tracer particle crosses one of the

sides of the unit square, periodic boundary conditions are

applied, and it reenters the diffusion domain at the opposite

side, as illustrated in Fig. 3. If the potential move intersects a

solid surface, appropriate boundary conditions for the var-

ious discrete versions of the no-flux boundary conditions

described above are applied. For the rejection and multiple

rejection versions of the boundary condition, multiple surface

intersections during one time step cannot occur. However,

for the specular reflection and interruption algorithms,

multiple intersections are possible. In these cases, if the

FIGURE 2 Plots of l vs. a for a/h ¼ 1.5 and a/h ¼ 1. The value a is the

curvature radius of the cell corners in the two-dimensional array shown in

Fig. 1. Tortuosities were computed using the approach based on homog-

enization theory.
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potential move intersects a solid surface, the time step is

reduced from Dt to lDt so that r(t 1 lDt) lies on the bound-

ary. The particle’s angle of departure from the surface is then

chosen by either the specular-reflection or interruption scheme,

and the particle completes the move in the appropriate di-

rection for the remainder of the time step. In cases where two

or more surfaces are very close to each other, a particle lying

between them might undergo multiple deflections between

the surfaces until it completes the move, and the procedure

needs to be repeated until the full time step Dt is elapsed.

Tracer particles are tracked in both reduced and global

coordinates; the reduced coordinates are the local coordi-

nates within the square unit, and the global coordinates are

the particles’ positions in an infinite medium.

The second moment of the relative global displacement of

the particles, which is needed to determine the effective

diffusion constant, is given by

S
2

r ðtÞ ¼ +
N

i¼1

ðjriðtÞ � rið0ÞjÞ2; (13)

where N is the number of tracer particles. The apparent dif-

fusion coefficient is then given by the long time limit of

D� ¼ S
2

r ðtÞ=ð2NdtÞ; (14)

where d is the spatial dimension; the tortuosity is

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D=D�

p
.

Results for the tortuosities for a/h¼ 1 are plotted in Fig. 4,

where it can be seen that only the specular reflection imple-

mentation of the zero-flux boundary condition yields the

correct results for the tortuosities for all values of a. The

expected linear relation between l and a is only observed for

this case. Table 1 contains a comparison of results for l(a)

obtained using the homogenization method and the random

walk algorithm using specular reflection boundary condi-

tions.

As can be seen in Fig. 4, for other implementations of the

no-flux boundary condition, results for the tortuosity begin to

deviate from the correct result as a approaches zero, i.e., as the

tubes become narrower. For the rejection boundary condition,

the move is rejected when a particle hits the solid surface.

Particles near solid surfaces therefore move slower than those

in the bulk, and the tortuosity is somewhat larger for all tube

diameters. As the tubes become narrower and narrower, more

and more of the particles hit a solid boundary during an

update, and an ever increasing number of moves are rejected.

Consequently, particles in these regions tend to remain there,

and the tortuosity increases. In the case of the multiple

rejection boundary condition, new increments are attempted

until one is found that does not intersect the surface. In the

narrow tubular regions, this means that the diffusion becomes

one-dimensional as h goes to zero. In addition, since the

FIGURE 3 Repeat unit used in the random walk simulations of diffusion

in the regular array shown in Fig. 1. The figure also illustrates the

implementation of periodic boundary conditions for two hypothetical tracer

particles.

FIGURE 4 Plots of l vs. a. Values of the tortuosity were obtained by

performing random walk simulations of diffusion in the two-dimensional

lattice arrangement of Fig. 1 for various implementations of the zero-flux

boundary condition at the cell surface. The value a/h ¼ 1, where a is the

radius of curvature of the cell corners and h is half the gap width between the

cells.

TABLE 1 Comparison of results for l(a) obtained in random

walk simulations using specular-reflection boundary conditions

with those obtained using the homogenization method

described by Chen and Nicholson (11)

a

l Using random walk

method with specular-reflection

boundary condition

l Using

homogenization

method

0.005 1.4120 1.4114

0.01 1.4044 1.4077

0.02 1.4002 1.4009

0.05 1.3814 1.3813

0.1 1.3484 1.3485

0.2 1.2841 1.2836

0.3 1.2172 1.2172
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particles cannot be deflected by the walls, they tend to con-

tinue to move along their line of motion at the junctions in this

limit. The diffusion process therefore becomes one-dimen-

sional as h / 0, and the tortuosity approaches 1 (¼
ffiffiffi
d
p

, since

d¼ 1 here). Finally, for the interruption boundary condition,

the overall move is a combination of two or more random

variables; the variance of the particle’s displacement (and

hence overall displacement of the particles) is therefore in-

creased, and the computed tortuosity is smaller than the

correct value.

The convergence properties of the Euler approximation

for linear stochastic equations depend on whether one seeks

to approximate the moments of the particle distribution, or to

satisfy an error criterion for particle position (44). The former

requirement is known as weak convergence, and the rate is

linear, both in the number of particles, N, and in the time

step, Dt; the latter is known as strong convergence, and the

rate is Oð
ffiffiffiffi
N
p
Þ (21). In the present work, since we are

interested in finding tortuosities in different porous media,

which would require computing the second moment of the

particle displacements, the weak convergence criterion is

used.

The simulations in two dimensions were performed using

between 104 and 2 3 104 tracer particles. Generally, it was

found that 10,000 particles was sufficient. The size of time

step (Dt) was chosen so that a further reduction in Dt resulted

in no changes in the measured tortuosity. The size of the time

step size depended on the value of a. The appropriate choice

of Dt decreased from 4 3 10�4 to 5 3 10�5 as a was reduced

from 0.3 to 0.005. Because of the initial uniform distribution

of tracer particles, converged results were obtained using no

more than 1000 time steps. This was sufficient to produce

results for S2
r , which scaled linearly in time.

Implementation in three dimensions

Three-dimensional simulations were performed in the void

spaces of both the regular and random vesicle packs generated

using the procedure described above. Figs. 5 and 6 show the

elementary repeat unit for the cubic array and the random

network. In both cases, the unit cell is a cube with edges of

length 1. At each time step, the coordinates of the tracer

particles are updated according to

rðt 1 DtÞ ¼ rðtÞ1
ffiffiffiffiffiffiffiffiffiffiffi
6DDt
p

½xêx 1 yêy 1 zêz�; (15)

where (x, y, z) is a random point on a unit sphere determined

by Marsaglia’s algorithm (45). As in two dimensions,

periodic boundary conditions were imposed on the faces of

the unit cube, and zero-flux boundary conditions on the cell

surfaces. The generalization of the random walk-specular

reflection algorithm to three dimensions is straightforward.

At the start of the simulations, the pore space was pop-

ulated with a random uniform distribution of tracer particles.

The number of tracer particles was typically on the order of

50,000. At each time step, the coordinates of the tracer par-

ticles were updated according to Eq. 15 and specular reflec-

tion boundary conditions were used if the particle intersected

a solid surface.

To improve the efficiency of the algorithm when deter-

mining whether a particle’s trajectory intersects a vesicle

FIGURE 5 Single relaxed vesicle in a periodic unit cube. The unit cube is

replicated periodically to form the network. Neighboring cells are in contact

along their flat surfaces. Diffusion occurs in the void space external to the

cubes.

FIGURE 6 A random array of 18 highly deformed vesicles forming a

random porous network. The unit cell is the unit cube, which is replicated

periodically to form the network. Diffusion occurs in the void space between

the vesicles. (The number of vesicles in the figure is .18 because periodic

images of some of the vesicles were included to avoid cuts through the

vesicles.)
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surface during a time step, the unit simulation cell is divided

into several subcells. Each subcell has a linked list of all

surface triangles located in the subcell (46). When a

particle’s coordinates are updated, it is then only necessary

to check for intersections with surface triangles in the same

and nearest-neighbor subcells. This reduces the computa-

tional time by a factor proportional to the number of subunit

cubes.

The number of time steps in the simulation is chosen

sufficiently large that the slope of a plot of S2
r vs. t reaches its

asymptotic value. For the configurations considered in this

article, it was found that 1000 time steps were sufficient for

simulations involving 50,000 tracer particles. The time

increment, Dt, was initially taken to be 4 3 10�5, so that the

particle’s displacement during a time step was ;5% of the

size of the unit simulation cell. In a given simulation, Dt was

gradually reduced until the asymptotic slope of a plot of S2
r

vs. t did not change if the time step is further reduced.

PORE-SIZE DISTRIBUTION

The pore volume fraction, a, does not characterize the

structure of the porous domain. Additional information is

contained in the pore-size distribution, P(s), which is the

probability that a small volume element of pore space is

located a (nearest) distance s from a pore surface (47). To

determine P(s), a large number (;100,000) of uniformly

distributed points are randomly chosen in the void space and

the closest distance s of each point to any pore surface is

measured. P(s) is the normalized sum of the number of

points, which lie at a distance s 6 ds from the solid surface.

Since the normalized distribution satisfies
R

PðsÞds ¼ 1, P(s)

has the dimension of inverse length. P(0) is the ratio of the

pore surface area to the pore volume, S/Vp [ 1/Rh, where Rh

is called the mean hydraulic radius, a quantity that can be

measured in diffusion nuclear magnetic resonance experi-

ments (48).

Results for the pore-size distribution in both the periodic

and random porous networks we generated are shown in Figs.

7 and 8, respectively. When comparing the results, it is im-

portant to remember that in both cases, the periodic simulation

cell has a linear dimension of 1, and s is measured in these

units. The sharp peak of P(s) at s very close to 0, indicates

that the cells are in very close contact with each other. This

remains true even as the pore volume is increased; however,

the area of contact is significantly reduced in this case, im-

plying a nonuniform shrinkage of cells—as proposed in Chen

and Nicholson (11) during osmotic stress.

RESULTS AND DISCUSSION

Our results for the geometric tortuosities as a function of the

pore volume fraction for both the regular and random

packings are shown in Fig. 9. The range of pore volume

fractions we considered is 0.11–0.27 for regular networks

and 0.10–0.30 for the random packing. First, note that the

tortuosities we calculate for the cubic array are significantly

larger than those obtained by Tao and Nicholson (13) in their

study of uniformly spaced convex cells. The reason for this is

that the networks considered in Tao and Nicholson (13)

consisted of polytopes with sharp corners. In contrast, the

configurations we obtain by minimizing the curvature energy

(see Fig. 5) have rounded vertices. In fact, inspection of Fig.

5 shows that the curvature at the cube vertices is smaller than

along the edges; as a consequence, the pore space at the junc-

tions is comparatively large.

The effect of having junctions with a larger radius of

curvature than the typical dimension of the connecting

tubular regions can be seen in Fig. 10, which contains a plot

of the tortuosity of the two-dimensional network shown in

Fig. 1 as a function of h, for fixed a ¼ 0.4. For h . 0.1, the

tortuosities plotted in Fig. 10 are slightly smaller than those

FIGURE 7 Pore-size distributions of the regular porous network for a

range of pore volume fractions. P(s) is the fraction of the porous region that

is distance s from the nearest cell wall.

FIGURE 8 Pore-size distributions of the random porous network for a

range of pore volume fractions. P(s) is the fraction of the porous region that

is distance s from the nearest cell wall.
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shown in Fig. 2 for h ¼ a. For smaller h, however, the

tortuosities increase dramatically, since diffusing particles

spend an ever-increasing amount of time trapped at the junc-

tions as h / 0. The ratio of the characteristic size of junctions

to the connecting tubular regions is therefore a primary factor

that determines the tortuosity, and explains the differences

between our results and those of Tao and Nicholson (13).

The results presented in Fig. 9 also show that the random

network has tortuosities that are smaller than those for the

regular array. This is probably due to the fact (see Fig. 11) that

while the cubic array has an organized structure consisting of

narrow channels and junctions, the random array does not (at

least at the current resolution). Indeed, several regions of the

void space in the random pack are surprisingly large; higher

resolution studies (in which the number of surface triangles in

a vesicle is increased) will be required to determine whether

this remains true in the continuum limit. Insufficient resolu-

tion could also be a reason that the measured tortuosities for

the random pack are lower than observed in experiment. The

size of a typical surface triangle is 0.05 for cubic regular array

(Fig. 5), and 0.1 for random pack (Fig. 6). This means that

length scales smaller than this size are not resolved correctly.

While this does not seem to be a problem for the cubic array, it

is probable that higher resolution studies would show that the

channels connecting the larger junctions in the random pack

are much smaller than predicted here. On the other hand, the

larger junctions are reasonably well resolved. Since an over-

estimation of the size of small channels reduces the tortuosity,

we expect the tortuosity to increase for higher resolutions.

It can also be seen that for the random network, the

magnitude of the slope of the tortuosity versus pore volume

fraction plot decreases with increasing a. This is what is

observed in experiment. In fact, an overlay of the tortuosities

of the random network with the experimental data (plotted in

Fig. 12) shows that the random network does indeed provide

a reasonably accurate representation of the pore volume

FIGURE 9 Tortuosities obtained from random walk simulations in the reg-

ular and random porous networks as a function of the pore volume fractions.

FIGURE 10 Plot of l as a function of h for fixed a¼ 0.4. a is the radius of

curvature of the cell corners in the regular two-dimensional array shown in

Fig. 1, and h is half the gap width between the cells. Tortuosities were

computed using the approach based on homogenization theory.

FIGURE 11 Comparison of sample cross-sections of the random porous

network (left) and regular network (right). In both cases, the pore volume

fraction is ;0.2.

FIGURE 12 A comparison of simulation and experimental results for the

tortuosity as a function of the pore volume fraction, a. The simulation results

(right vertical axis) are those obtained for the random pack shown in Fig. 6.

Experimental results (left vertical axis) were obtained from Chen and

Nicholson (11). Although the absolute values of the tortuosities differ, the

figure shows that the functional dependence of l on a are very similar.
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fraction dependence of the tortuosity. It is important to note,

however, that for pore volume fractions larger than the

values studied, the vesicles are essentially spherical, and

there is no plateau. For the plateau to extend to much larger

values of porosity—as observed in experiment—it would

probably be necessary to consider packings of polydisperse

vesicles with nonspherical rest shapes.

Finally, the pore-size distributions of both the regular

cubic network (Fig. 7) and random network (Fig. 8) exhibit

dramatic changes as a function of the porosity, indicating

that there is a nonuniform shrinkage of the vesicle shapes as

the porosity is decreased. This is consistent with the behavior

proposed by Chen and Nicholson (11) to explain the exper-

imentally observed dependence of the tortuosity on pore vol-

ume fraction. In addition, the two-dimensional cross section

of the random network shown in Fig. 11 confirms the

existence of ‘‘lakes’’ connected, for the most part, by narrow

channels.

First-principles modeling studies of the type described in

this article provide valuable insight into the geometric

properties of the brain’s ECS. The networks we considered

are constructed by minimizing the configurational energy of

the constituent vesicles. We used a simple model free energy,

Eq. 1, which is known to provide a good description of the

configurational energy of fluid membranes. This is certainly

an oversimplification, since it ignores elastic contributions

from the cytoskeleton, structural heterogeneities, etc. Never-

theless, we believe that the general features we observe, such

as increased tortuosity due to the comparatively large size of

the pore void space at network junctions, will remain valid

when more sophisticated models for the cells’ mechanical and

elastic properties become available. Indeed, our results lend

credence to the suggestion by Chen and Nicholson (11) that

localized residual space at network junctions, the ‘‘lakes,’’

can help explain both the large tortuosities observed in ex-

periment as well as the characteristic behavior of the tortuosity

under osmotic stress. Our results for the random vesicle packs

are clearly resolution-limited, and higher resolution studies

are required to determine the extent to which models of this

type can explain the observed behavior, and resolve re-

maining questions regarding the importance of viscous or

constitutive contributions to the measured tortuosity.
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